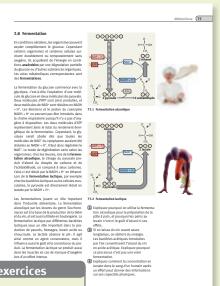
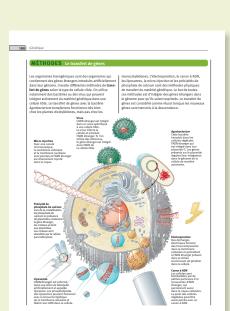


BIOLOGIE

NOTIONS FONDAMENTALES

D^r Jürgen Braun D^r Andreas Paul Elsbeth Westendorf-Bröring


Supervision de l'édition française D^r Peter Landolt et D^r René Gfeller


Secondaire 2

Structure du manuel

Corps du texte et exercices

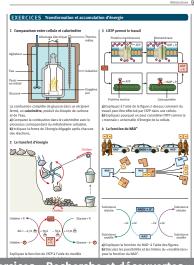
- Informations de base sur le sujet
- Mise en relation du contenu avec les concepts de base pertinents
- Exercices à la fin de chaque sous-chapitre, pour répéter, consolider et appliquer les connaissances acquises

Travaux pratiques

- Travaux pratiques réalisables en classe
- Introduction aux normes de sécurité
- Travaux pratiques autogérés impliquant une planification indépendante des expériences et la conception de modèles à tester

Méthodes

 Présentation de méthodes scientifiques utilisées dans le monde de la recherche

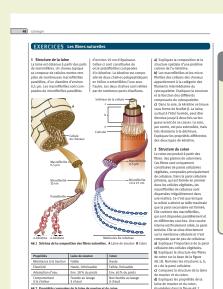

duction sommaire au sujet Contextualisation dans le cadre général de l'évolution Illustration des thèmes actuels de recherche et des applica-

tions possibles

• Réflexion sur des valeurs bioéthiques ou écologiques

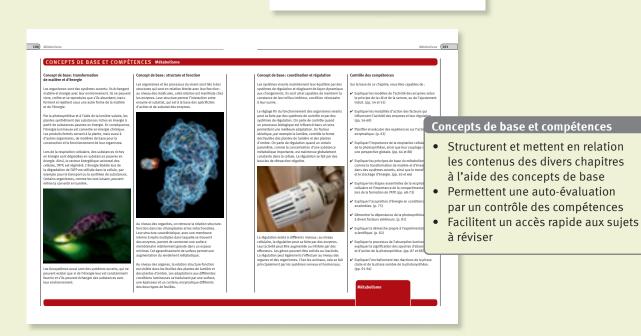
Compléments

 Informations complémentaires qui dépassent le cadre scolaire du thème traité et élargissent l'horizon



Exercices « Recherche et découvertes »

- Retracent, par des expériences historiques significatives, les étapes des grandes découvertes en biologie
- Amènent l'étudiant à formuler lui-même des hypothèses et à les vérifier en analysant des résultats d'expériences


Exercices de fin de chapitre

- Consolident les apprentissages
- Réorganisent et permettent le transfert des connaissances
- Entraînent à l'apprentissage systématique

Exercices « Connaissances en réseau »

- Connectent le contenu de différents chapitres et facilitent une approche pluridisciplinaire des thèmes abordés
- Constituent un excellent entraînement aux performances attendues pour obtenir la Maturité

Annexes

- Un glossaire détaillé et un index complet permettent d'arriver rapidement aux concepts-clés
- En fin d'ouvrage, une liste explicite les compétences développées dans les exercices

Sommaire

	Qu'est-ce que la biologie?	9	Mé	étabolisme
	Les concepts de base des sciences naturelles	11	4	Las annumas anamas du mátaballana
	Niveaux d'organisation biologique	12	1	Les enzymes, agents du métabolisme
			1.1	Les enzymes sont des biocatalyseurs
C.,	talaria		1.2	Influences sur l'activité enzymatique
Cy	tologie	14	1.3	Cofacteurs
				EXERCICES L'expérience de HARDEN-YOUNG.
1	Structures cellulaires	16	1.4	Vitesse de réaction et inhibition de l'activité
1.1	Les cellules en microscopie optique	16		enzymatique
1.2	Images de cellules au microscope électronique	18		EXERCICES Inhibition enzymatique en
1.3	Comparaison entre procaryotes et eucaryotes	20		médecine
1.4	La théorie des endosymbiotes	21	1.5	Régulation enzymatique
1.5	Spécialisation des cellules	22	1.6	Biologie appliquée: les enzymes pour
1.6	Les biomembranes	24		l'industrie et le ménage
	MÉTHODES L'utilisation de modèles			EXERCICES Les enzymes des lessives
	en biologie	25		EXERCICES Enzymes
1.7	Le transport à travers les biomembranes	26		TRAVAUX PRATIQUES Enzymes
	EXERCICES Osmose et transport dans les			
	cellules végétales	28	2	Le catabolisme et la respiration cellulaire
	TRAVAUX PRATIQUES L'osmose dans les		2.1	L'importance de la respiration cellulaire
	cellules végétales	29	2.2	Energie et conversion d'énergie
1.8	Les composants de la cellule	30		EXERCICES Systèmes ouverts et fermés
1.9	Biologie appliquée : culture de cellules en		2.3	Réservoir d'énergie et transfert d'énergie
	médecine	35		EXERCICES Transformation et accumulation
	EXERCICES Mise en relation Erythrocytes	36		d'énergie
	, , , , , , , ,		2.4	Vue globale de la respiration cellulaire
2	Constituants chimiques des cellules	37		EXERCICES Expériences sur la respiration
2.1	Les biomolécules	37		cellulaire
2.2	Les protéines	38	2.5	La glycolyse
2.3	Les glucides	40		Le cycle de Krebs
2.4	Les lipides	42		EXERCICES Analyse de fragments de
2.5	Nucléotides et acides nucléiques	43		mitochondries
	L'eau	44	2.7	La chaîne respiratoire
2.0	MÉTHODES La chromatographie	45		EXERCICES Découpleurs
	MÉTHODES L'électrophorèse sur gel	46		EXERCICES Respiration cellulaire
	EXERCICES Constituants chimiques des	40	2.8	Fermentation
	cellules	47	2.9	Biologie appliquée: le brassage de la bière
		47	2.9	dans l'Antiquité et aujourd'hui
	EXERCICES Mise en relation Les fibres			TRAVAUX PRATIQUES Fermentations
o =	naturelles	48	2.10	Couplage du catabolisme et de l'anabolisme
2.7	Biologie appliquée : la soie d'araignée – un		2.10	
	matériau de haute performance	49		dans le métabolisme cellulaire
	CONCERTS DE BASE ET COMPÉTEMENT			EXERCICES Métabolisme cellulaire
	CONCEPTS DE BASE ET COMPÉTENCES			
	Cytologie	50		

3	Les voies métaboliques de la photosynthèse	80		Localisation d'un gène	115
3.1	Importance de la photosynthèse	80	1.6	L'hérédité extranucléaire	116
3.2	L'activité photosynthétique en fonction des		1.7	L'hérédité polygénique	117
	facteurs extérieurs	81	1.8	Les mutations	118
	EXERCICES Photosynthèse et respiration		1.9	La plasticité phénotypique	119
	cellulaire	81		EXERCICES Recherche et découvertes	
	MÉTHODES L'expérimentation	82		Variabilité des graines de haricot	119
3.3	La feuille, organe spécialisé pour la			-	
	photosynthèse	83	2	Les bases moléculaires de la génétique	120
3.4	Feuilles de lumière et feuilles d'ombre	84	2.1	La nature chimique du matériel génétique	120
3.5	Transpiration et photosynthèse	85	2.2		121
	EXERCICES Facteurs influençant la			TRAVAUX PRATIQUES autonomes	
	photosynthèse	86		Isolation d'ADN	122
3.6	Spectre d'absorption et spectre d'action	87	2.3		
	COMPLÉMENTS Lumière et absorption			et Stahl	123
	lumineuse	88	2.4	Mécanismes moléculaires de la réplication de	
3.7	Photosystèmes	89		l'ADN	124
	TRAVAUX PRATIQUES Pigments foliaires	90		EXERCICES Génétique moléculaire	125
3.8	Vue d'ensemble de la photosynthèse	91		MÉTHODES La PCR	126
	EXERCICES Expériences de BLACKMAN	91		EXERCICES PCR	127
3.9	Les réactions de la phase claire	92		MÉTHODES Le séquençage de l'ADN par la	
	Les réactions de la phase sombre	94		méthode SANGER	128
	EXERCICES Recherche et découvertes			TRAVAUX PRATIQUES Electrophorèse sur gel	129
	Réaction de HILL	95			
3.11	Biologie appliquée: les plantes comme source		3	Des gènes aux protéines	130
	d'énergie	96	3.1		130
	EXERCICES Comparaison des biocarburants .	96	3.2		132
	TRAVAUX PRATIQUES Photosynthèse	97	3.3	Le code génétique	133
	EXERCICES Photosynthèse	98	3.4	La traduction	134
	ŕ		3.5	Expression génique chez les eucaryotes	136
	CONCEPTS DE BASE ET COMPÉTENCES		3.6		
	Métabolisme	100		de réparation de l'ADN	138
				EXERCICES L'hémophilie	140
				MÉTHODES Les puces à gènes	141
Gé	nétique	102	3.7	Régulation génique chez les procaryotes	142
	•		3.8	Régulation génique chez les eucaryotes	144
1	Reproduction et hérédité	104	3.9	Les différentes notions du gène au cours du temps	146
1.1	Reproduction asexuée et mitose	104	3.10	Le protéome	147
1.2	Reproduction sexuée et méiose	107	3.11	L'épigénétique	148
1.3	Biologie appliquée: la reproduction			EXERCICES Les aspects modernes de	
	médicalement assistée	110		l'expression des gènes	149
	EXERCICES Diagnostic préimplantatoire	111		EXERCICES Mise en relation La mucoviscidose	150
1.4	Les découvertes de MENDEL	112			
1.5	Les chromosomes: supports cellulaires de		4	La génétique du développement	152
	l'hérédité	114	4.1	Le développement embryonnaire chez l'humain	152
	EXERCICES Hérédité intermédiaire	115	4.2	Les gènes contrôlent le développement	
	EXERCICES Recherche et découvertes			embryonnaire	154

	EXERCICES Mutations des gènes maternels	156	MÉTHODES Analyse des arbres généalogiques	
4.3	Biologie appliquée: techniques de reproduction		et calcul des probabilités	193
	chez les animaux	157	7.4 Les mutations génomiques	194
4.4	Le cancer: une altération de la régulation du		7.5 Les mutations chromosomiques	196
	cycle cellulaire	158	7.6 Biologie appliquée: conseil génétique et	
	COMPLÉMENTS Les thérapies classiques et			198
	modernes contre le cancer	160		200
4.5	Le vieillissement	161	EXERCICES La génétique humaine	201
4.6	Biologie appliquée: utilisation de cellules		EXERCICES Mise en relation La PCU – une	
	souches	162	maladie métabolique génétique	202
	MÉTHODES La prise de décisions dans le			
	domaine de la bioéthique	164	CONCEPTS DE BASE ET COMPÉTENCES	
	EXERCICES La génétique du développement	166	La génétique	204
_		1.60		
5	La génétique des bactéries et des virus	168		
5.1	génétique	168	Immunologie	206
5.2	La recombinaison génétique chez les bactéries	169	minutotogic	200
5.3	Biologie appliquée: les bactéries dans la	10)	1 Le système immunitaire	208
ر.ر	biotechnologie	170		208
5.4	Structure et reproduction des virus	171		209
5.5	La recombinaison et le transfert de gènes chez	-, -		210
3.5	les virus	172		210
5.6		173		211
	COMPLÉMENTS Les approches			212
	thérapeutiques du SIDA	174		215
	EXERCICES La génétique des bactéries		_	216
	et des virus	175		217
			1.8 Biotechnologies: greffes et rejets de greffe	218
6	Le génie génétique	176	1.9 Biotechnologies: les vaccins	219
6.1	Les méthodes du génie génétique	176	1.10 Biologie appliquée: les anticorps monoclonaux	220
	EXERCICES Le génie génétique	179	EXERCICES La défense immunitaire	221
	MÉTHODES Le transfert de gènes	180	TRAVAUX PRATIQUES Test ELISA	222
6.2	Identification de gènes	181	EXERCICES Mise en relation Le virus de	
6.3	Biologie appliquée : le génie génétique en		l'immunodéficience humaine	223
	médecine	182		
6.4	Biologie appliquée : l'empreinte génétique	183	CONCEPTS DE BASE ET COMPÉTENCES	
6.5	1 3 1	184	Immunologie	224
	COMPLÉMENTS Le génie génétique – pour			
	et contre	186		
	EXERCICES Le génie génétique	187		
7	La génétique humaine	188		
7.1	Importance de la génétique humaine	188		
7.2	L'analyse des chromosomes humains	189		
7.3	Modes de transmission des maladies			
	héréditaires	190		

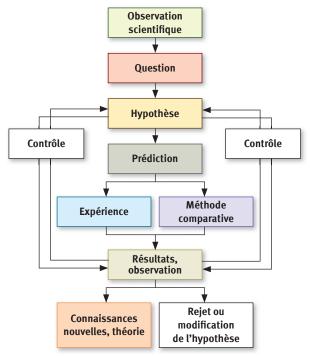
Ne	urobiologie	226	4 4.1	Régulation hormonale et régulation nerveuse	274 274
1 1.1 1.2 1.3 1.4	Structure et fonction des cellules nerveuses Les cellules nerveuses Le potentiel de repos Le potentiel d'action Propagation du potentiel d'action EXERCICES Recherche et découvertes Investigations sur des canaux ioniques isolés . Transmission de l'influx nerveux EXERCICES Intégration neuronale L'activité musculaire est contrôlée par des neurones Poisons synaptiques EXERCICES Mise en relation Le métabolisme musculaire	228 228 230 232 234 235 236 237 238 240	4.1 4.2 4.3 4.4	Régulation hormonale et régulation nerveuse Le système hormonal humain	274 274 276 277 278 279 280 281 282 283
2	EXERCICES Les neurones	242 244 244		CONCEPTS DE BASE ET COMPÉTENCES Communication hormonale de l'information	286
2.12.22.32.4	Cellules sensorielles – organes sensoriels L'œil – un organe photosensible La phototransduction Traitement de l'information dans la rétine EXERCICES Inhibition latérale EXERCICES Organes sensoriels – Cellules sensorielles	244246248250251252	1	Influence des facteurs biotiques et abiotiques sur les êtres vivants	288 290
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Traitement de l'information Le système nerveux humain La moelle épinière et les réflexes La structure du cerveau humain Anatomie cérébrale fonctionnelle MÉTHODES Imagerie médicale Du stimulus à la perception Biologie appliquée: la maladie de PARKINSON EXERCICES Mise en relation La sclérose en plaques et la maladie d'ALZHEIMER Les mécanismes cellulaires de l'apprentissage La mémoire Modifications du cerveau produites par une addiction EXERCICES Effet des opiacés EXERCICES Traitement de l'information CONCEPTS DE BASE ET COMPÉTENCES	254 254 256 257 258 260 261 262 263 264 266 268 269 270	2.2 2.3	Potentiel écologique EXERCICES Recherche et découvertes Graminées et humidité du sol	292 293 294 296 297 298 299 300

Traitement neuronal de l'information 272

3	Facteurs biotiques	302		durabilité	341
3.1	Concurrence	302	7	Mise en danger et protection de la biosphère .	342
	EXERCICES Concurrence chez les bactéries .	302	7.1	Pollution et protection de l'atmosphère	342
3.2	Relations prédateur-proie	303		EXERCICES Polluants atmosphériques	342
3.3	Parasitisme	304	7.2	Problématique de l'ozone	343
	EXERCICES Mise en relation La tique, un		7.3	Effet de serre	344
	parasite	305		EXERCICES Variations de la température	344
3.4	Symbiose mutualiste	306	7.4	Changements climatiques	345
3.5	Biologie appliquée: lutte contre les nuisibles.	307		EXERCICES Pollution et protection de	
	EXERCICES Recherche et découvertes			l'atmosphère	346
	Principe de l'exclusion compétitive	308		COMPLÉMENTS Croissance de la population	
3.6	Niche écologique	309		mondiale	347
	EXERCICES Facteurs environnementaux		7.5	Pollution et protection des sols	348
	biotiques	310	7.6	Dégâts aux forêts	349
	·		7.7	Pollution et protection des eaux	350
4	Ecologie des populations	312		EXERCICES Consommation d'eau	350
4.1	Croissance des populations	312	7.8	Traitement des eaux usées	352
4.2	Régulation de la densité de population	313		COMPLÉMENTS Conflits pour l'eau	353
	EXERCICES Ecologie des populations	315	7.9	Ecobilans	354
	3 1 1			EXERCICES Analyse de l'efficience écologique	354
5	Ecosystèmes	316		EXERCICES Pollution et protection du sol et	
5.1	Structure fonctionnelle d'un écosystème			de l'eau	355
	forestier	316	7.10	Recul de la biodiversité et protection de la	
5.2	Niveaux trophiques d'un écosystème forestier.	318		nature	356
	EXERCICES Rendements énergétiques				
	alimentaires	319		CONCEPTS DE BASE ET COMPÉTENCES	
5.3	Cycle de la matière dans un écosystème			Ecologie	358
	forestier	320			
	EXERCICES Structure et fonction d'un				
	écosystème	321	Ev	olution	360
5.4	Productivité des écosystèmes	322			
5.5	Circulation de l'énergie dans un écosystème		1	Théories de l'évolution	362
	forestier	323	1.1	Origines des théories de l'évolution	362
5.6	Cycles biogéochimiques	324	1.2	La théorie synthétique de l'évolution	364
5.7	Stabilité et changements d'un écosystème	326		EXERCICES Théories de l'évolution	365
5.8	L'écosystème lacustre	328			
	EXERCICES Ecosystème lacustre	330	2	Les indices de l'évolution	366
	L'écosystème fluvial	332	2.1	Indices tirés de la paléontologie	366
5.10	Bioindicateurs	334		COMPLÉMENTS Radiométrie	369
	EXERCICES Les cours d'eau	335	2.2	Indices tirés de la biogéographie	370
	TRAVAUX PRATIQUES Les eaux courantes .	336		COMPLÉMENTS La dérive des continents	371
	MÉTHODES Evaluer un dilemme socio-		2.3	Indices tirés de la morphologie et de l'anatomie	
	écologique	338		comparées	372
				EXERCICES Indices en faveur de l'évolution .	374
6	Concepts de développement durable	340	2.4	Indices tirés de la biologie moléculaire	376
	EXERCICES Evaluation écologique et			EXERCICES Hybridation ADN-ADN	376

2.5	Indices tirés de l'embryologie	378	5.2	Origines de la vie: les premières cellules	408
	COMPLÉMENTS Le créationnisme	380	5.3	Les trois domaines	409
	EXERCICES Arbres phylogénétiques	380	5.4	Evolution de la diversité biologique	410
	EXERCICES Mise en relation Globines	381		MÉTHODES Construction d'un arbre	
				phylogénétique	413
3	Les mécanismes de l'évolution	382		EXERCICES Histoire phylogénétique des	
3.1	La variabilité génétique, base des changements			êtres vivants	414
	évolutifs	382			
3.2	Génétique des populations	384	6	L'évolution de l'Homme	416
3.3	Dérive génétique	386	6.1	L'Homme et ses proches cousins	416
	EXERCICES Les mécanismes de l'évolution .	387		EXERCICES Anatomie comparée	417
3.4	La sélection naturelle, base de l'adaptation		6.2	Origines de l'Homme	418
	biologique	388	6.3	Origine et diversité des Hommes modernes	420
	EXERCICE Sélection naturelle chez les			EXERCICES Les voies migratoires d'Homo	
	épinoches	389		sapiens	421
3.5	Biologie appliquée : élevage et agriculture	390		EXERCICES Relations phylogénétiques	
3.6	Sélection sexuelle	392		entre les humains	422
	EXERCICES Choix du partenaire chez		6.4	Evolution intellectuelle et culturelle des	
	l'euplecte à longue queue	393		Hommes	423
3.7	Systèmes d'accouplement	394		EXERCICES Facteurs d'hominisation	423
3.8	La sélection de parentèle	396		EXERCICES Evolution humaine	426
	EXERCICES Systèmes d'accouplement	397		EXERCICES Mise en relation Daltonisme total	427
4	La spéciation	398		CONCEPTS DE BASE ET COMPÉTENCES	
4.1	Le concept d'espèce et l'isolement reproductif	398		Evolution	428
	EXERCICES Isolement reproductif	398			
4.2	Modes de spéciation	400		Glossaire	430
	EXERCICES Spéciation chez les salamandres	401		Informations pour une expérimentation	
4.3	Radiation adaptative	402		en toute sécurité	443
	EXERCICES Lémuriens de Madagascar	403		Liste des produits chimiques	444
	EXERCICES Spéciation	404		SGH-Système général harmonisé	445
4.4	Coévolution	405		Prescriptions concernant les produits	
	EXERCICES Coévolution chez les Tisserins	405		chimiques	446
				Index	447
5	La phylogénie de la vie	406		Crédit photographique	453
5.1	Origines de la vie : évolution chimique	406			
	EXERCICES Expérience de MILLER-UREY	407			

Travaux pratiques


L'éditeur et les rédacteurs de la version française déclinent toute responsabilité concernant les travaux pratiques. Les personnes effectuant les travaux pratiques, y compris les travaux pratiques autonomes, sont seules responsables de leur réalisation conforme aux règlements en vigueur et aux normes élémentaires de prudence. Les étudiants se renseigneront auprès des personnes responsables des laboratoires de leur établissement.

Les symboles de danger et les explications y relevantes sont détaillés à la page 446 du présent ouvrage. Une liste des substances dangereuses et des substances présentant des risques particuliers se trouve aux pages 442 et 445 du manuel « Chimie, notions fondamentales SII », LEP, ISBN 978-2-606-01361-5.

Qu'est-ce que la biologie?

La **biologie** (gr. *bios*: vie, *logos*: science) fait partie des sciences naturelles; c'est une science empirique qui se fonde sur des observations et des mesures vérifiables. Les biologistes étudient les êtres vivants du point de vue de leur structure, de leur mode de vie, de leur comportement, de leur développement et de leur origine. Toutefois, la biologie ne se limite pas à l'étude des individus: les divers niveaux d'organisation du monde vivant, des molécules à la biosphère, font aussi partie de ses objets d'étude. Les organismes représentent un des niveaux d'organisation du vivant. Le niveau le plus vaste est celui de la biosphère, qui

9.1 Orang-outan

9.2 Schéma d'acquisition des nouvelles connaissances en science: la méthode hypothético-déductive

constitue l'ensemble des milieux naturels où l'on rencontre des êtres vivants. La biologie vise à comprendre les structures et les phénomènes du monde vivant à ses divers niveaux, en tenant compte de son évolution.

La démarche scientifique

1. Observations scientifiques

Ce sont des observations planifiées d'objets ou de phénomènes mesurables (quantifiables). Elles produisent des données objectives et reproductibles.

Exemple: Des observations sur le terrain ont révélé que la plupart des orang-outans mâles se déplacent d'une région à l'autre au lieu d'occuper un territoire attitré.

2. Questions

Formuler des questions scientifiques fondées sur des observations.

Exemple: Pour quelle raison la plupart des orang-outans mâles se déplacent-ils d'un territoire à l'autre?

3. Hypothèses

Une hypothèse constitue une explication provisoire, une proposition faite pour expliquer un phénomène. En ce qui concerne l'observation ci-dessus, on peut postuler que:

- **a)** les mâles qui se déplacent ont un succès reproductif plus élevé.
- b) leur nutrition est améliorée ou facilitée.

4. Prédictions

Les hypothèses doivent être vérifiables. La vérification déductive fait appel à la formulation logique **«si... et... alors »**. Si l'hypothèse se révèle juste sous certaines conditions expérimentales, alors un résultat déterminé est attendu.

5. Vérification des hypothèses

En biologie, expériences et méthodes comparatives permettent de vérifier les hypothèses.

Exemple des orang-outans: On compare les orang-outans mâles du groupe des «voyageurs» avec le groupe témoin des «sédentaires» du point de vue de la quantité et de la qualité de la nourriture et du succès reproductif.